

AUTODESK

Point2Cyl: Reverse Engineering 3D Objects from Mikaela Angelina Uy* Yen-yu Chang* Joseph Lambourne **Tolga Birda**

PROBLEM OVERVIEW

- Reverse engineering from a raw geometry to a CAD model is an essential task to enable manipulation of the 3D data.
- Given an input point cloud, our task is to infer its CAD program.
- Recent approaches either assume i) *fixed and finite number* of primitives [2], or ii) directly predict a program without utilizing geometry [3].
- We introduce a novel **geometry-aware approach** that casts the problem as an **extrusion cylinder decomposition** problem.

EXTRUSION CYLINDER

- We predict **geometric proxies**, which are used to estimate extrusion parameters in differentiable and closed-form formulations.
- Geometric Proxies:
 - Extrusion cylinder segmentation
 - Per-point normals
- **Base-barrel segmentation**
- Derived extrusion cylinder parameters:
 - **Extrusion axis**
 - **Extrusion center**
 - Normalized sketch
 - Sketch scale
 - **Extrusion extent**

OUR POINT2CYL

We represent sketches as **implicits** [3]

Extrusion Axis Model Estimation

 $E_8: (0, 0, 0, -2, -1, 0, 3,$ 1, 0, New body, One-sided) $R_{10}:(0,0,1.125)$ $E_{11}: (0, 0, 0, -2, 0, 0, 2.25)$

m Point Clouds Minhyuk Sung Pu Leonidas Guibas	s to Exclusion (rvi Goel
	RESULIS
axis	Quan e Re Table 1. Quantitative results on Fusion
$\frac{\text{center}}{\text{sketch}}$ $\frac{\text{scale}}{\text{extent}}$ K	Seg. \uparrow Norm.(°) \downarrow B.B $\widehat{\mathbf{M}}$ H.V. + $\mathbf{N}_{\mathbf{J}}$ 0.40912.2640.59D.P \mathbf{W} \mathcal{L}_{sketch} 0.69912.2640.91 \mathbf{W} \mathcal{L}_{sketch} 0.6998.7470.91 \mathbf{W} \mathcal{L}_{sketch} 0.6998.7470.91 \mathbf{H} \mathbf{V} $\mathbf{N}_{\mathbf{J}}$ 0.54013.5730.57
Output Set of Extrusion Cylinders	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sketch Implicit	Qualita v Resus
rmals of barrel nts are pendicular to the rusion axis. $Xe_k = 0$ $min(e_k^T X^T Xe_k)$ $n_i^T e_k = 0$	
rmals of base points parallel to the rusion axis. $n_i^T e_k = \pm 1$ $N_i^T e_k = \pm 1$ $M_k^T e_k = \pm 1$ $M_k^T e_k = \pm 1$ $M_k^T e_k = \pm 1$	Applications for Shape
igenvalue of $(X^T X - Y^T Y)$ sion	Editing
Reconstruction	
	References: [1] Supervised Fitting of Geometric [2] DeepCAD: A Deep Generative [3] IGR: Implicit Geometric Regul

